Viscous Limits for strong shocks of one-dimensional systems of conservation laws
نویسنده
چکیده
We consider a piecewise smooth solution of a one-dimensional hyperbolic system of conservation laws with a single noncharacteristic Lax shock. We show that it is a zero dissipation limit assuming that there exist linearly stable viscous profiles associated with the discontinuities. In particular, following the approach of [7], we replace the smallness condition obtained by energy methods in [6] by a weaker spectral assumption. The complete proofs can be found in [14].
منابع مشابه
Self-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملRelative entropy applied to the stability of viscous shocks up to a translation for scalar conservation laws
We consider inviscid limits to shocks for viscous scalar conservation laws in one space dimension, with strict convex fluxes. We show that we can obtain sharp estimates in L, for a class of large perturbations. Those perturbations can be chosen big enough to destroy the viscous layer. This shows that the fast convergence to the shock does not depend on the fine structure of the viscous layers. ...
متن کاملA Note on Adjoint Error Estimation for One–Dimensional Stationary Conservation Laws with Shocks
We consider one-dimensional steady-state conservation laws with discontinuous solutions. Giles and Pierce [7] realized that a shock leads to a new term in the adjoint error representation for target functionals. This term disappears if and only if the adjoint solution satisfies an internal boundary condition. Curiously, most computer codes implementing adjoint error estimation ignore the new te...
متن کاملMulti-dimensional Stability of Lax Shocks in Hyperbolic-elliptic Coupled Systems
We study nonlinear asymptotic stability of small–amplitude Lax shocks in a model consisting of a system of multi–dimensional conservation laws coupled with an elliptic system. Such a model can be found in context of dynamics of a gas in presence of radiation. Our main result asserts that the standard uniform Evans stability condition implies nonlinear stability. The main analysis is based on th...
متن کاملWeak Shocks for a One-Dimensional BGK Kinetic Model for Conservation Laws
For one-dimensional kinetic BGK models, regarded as relaxation models for scalar conservation laws with genuinely nonlinear fluxes, existence of small amplitude travelling waves is proven. Dynamic stability of these kinetic shock profiles is shown by extending a classical energy method for viscous regularizations of conservation laws.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002